Lucene 的 IndexSearcher 提供一个 explain 方法,能够解释 Document 的 Score 是怎么得来的,具体每一部分的得分都可以详细地打印出来。这里用一个中文实例来纯手工验算一遍 Lucene 的评分算法,并且结合 Lucene 的源码做一个解释。
实际用例
首先是公司开发实际的用例,使用“湿疹”来检索多个字段。
{
"from": 0,
"size": 1,
"query": {
"bool": {
"filter": [
{
"term": {
"is_delete": {
"value": false,
"boost": 1
}
}
},
{
"bool": {
"should": [
{
"term": {
"item_type": {
"value": 1601,
"boost": 1
}
}
}
],
"disable_coord": false,
"adjust_pure_negative": true,
"boost": 1
}
}
],
"should": [
{
"term": {
"title.keyword": {
"value": "湿疹",
"boost": 400
}
}
},
{
"term": {
"title_alias.keyword": {
"value": "湿疹",
"boost": 200
}
}
},
{
"constant_score": {
"filter": {
"query_string": {
"query": "title.ik_gram:湿疹",
"fields": [],
"use_dis_max": true,
"tie_breaker": 0,
"default_operator": "or",
"auto_generate_phrase_queries": false,
"max_determinized_states": 10000,
"enable_position_increments": true,
"fuzziness": "AUTO",
"fuzzy_prefix_length": 0,
"fuzzy_max_expansions": 50,
"phrase_slop": 0,
"escape": false,
"split_on_whitespace": true,
"boost": 1
}
},
"boost": 100
}
},
{
"constant_score": {
"filter": {
"query_string": {
"query": "title_alias.ik_gram:湿疹",
"fields": [],
"use_dis_max": true,
"tie_breaker": 0,
"default_operator": "or",
"auto_generate_phrase_queries": false,
"max_determinized_states": 10000,
"enable_position_increments": true,
"fuzziness": "AUTO",
"fuzzy_prefix_length": 0,
"fuzzy_max_expansions": 50,
"phrase_slop": 0,
"escape": false,
"split_on_whitespace": true,
"boost": 1
}
},
"boost": 50
}
},
{
"constant_score": {
"filter": {
"query_string": {
"query": "title_sub_title:湿疹",
"fields": [],
"use_dis_max": true,
"tie_breaker": 0,
"default_operator": "or",
"auto_generate_phrase_queries": false,
"max_determinized_states": 10000,
"enable_position_increments": true,
"fuzziness": "AUTO",
"fuzzy_prefix_length": 0,
"fuzzy_max_expansions": 50,
"phrase_slop": 0,
"escape": false,
"split_on_whitespace": true,
"boost": 1
}
},
"boost": 50
}
},
{
"constant_score": {
"filter": {
"query_string": {
"query": "alias_sub_title:湿疹",
"fields": [],
"use_dis_max": true,
"tie_breaker": 0,
"default_operator": "or",
"auto_generate_phrase_queries": false,
"max_determinized_states": 10000,
"enable_position_increments": true,
"fuzziness": "AUTO",
"fuzzy_prefix_length": 0,
"fuzzy_max_expansions": 50,
"phrase_slop": 0,
"escape": false,
"split_on_whitespace": true,
"boost": 1
}
},
"boost": 50
}
},
{
"query_string": {
"query": "explain_introduce_exists:1",
"fields": [],
"use_dis_max": true,
"tie_breaker": 0,
"default_operator": "or",
"auto_generate_phrase_queries": false,
"max_determinized_states": 10000,
"enable_position_increments": true,
"fuzziness": "AUTO",
"fuzzy_prefix_length": 0,
"fuzzy_max_expansions": 50,
"phrase_slop": 0,
"escape": false,
"split_on_whitespace": true,
"boost": 0.8
}
},
{
"query_string": {
"query": "-explain_introduce_exists:1",
"fields": [],
"use_dis_max": true,
"tie_breaker": 0,
"default_operator": "or",
"auto_generate_phrase_queries": false,
"max_determinized_states": 10000,
"enable_position_increments": true,
"fuzziness": "AUTO",
"fuzzy_prefix_length": 0,
"fuzzy_max_expansions": 50,
"phrase_slop": 0,
"escape": false,
"split_on_whitespace": true,
"boost": 0.5
}
}
],
"disable_coord": false,
"adjust_pure_negative": true,
"boost": 1
}
},
"min_score": 1,
"explain": true
}
完整的输出不展示了,截取_explanation 解释字段,逐一分析各项的得分是怎么计算的。
{
"value": 500.8,
"description": "sum of:",
"details": [
{
"value": 400,
"description": "weight(title.keyword:湿疹 in 1490) [PerFieldSimilarity], result of:",
"details": [
{
"value": 400,
"description": "score(doc=1490,freq=1.0), product of:",
"details": [
{
"value": 400,
"description": "queryWeight, product of:",
"details": [
{
"value": 400,
"description": "boost",
"details": []
},
{
"value": 1,
"description": "idf, computed as log((docCount+1)/(docFreq+1)) + 1 from:",
"details": [
{
"value": 3,
"description": "docFreq",
"details": []
},
{
"value": 1491,
"description": "docCount",
"details": []
}
]
},
{
"value": 1,
"description": "queryNorm",
"details": []
}
]
},
{
"value": 1,
"description": "fieldWeight in 1490, product of:",
"details": [
{
"value": 1,
"description": "tf(freq=1.0), with freq of:",
"details": [
{
"value": 1,
"description": "termFreq=1.0",
"details": []
}
]
},
{
"value": 1,
"description": "idf, computed as log((docCount+1)/(docFreq+1)) + 1 from:",
"details": [
{
"value": 3,
"description": "docFreq",
"details": []
},
{
"value": 1491,
"description": "docCount",
"details": []
}
]
},
{
"value": 1,
"description": "fieldNorm(doc=1490)",
"details": []
}
]
}
]
}
]
},
{
"value": 100,
"description": "ConstantScore(title.ik_gram:湿疹), product of:",
"details": [
{
"value": 100,
"description": "boost",
"details": []
},
{
"value": 1,
"description": "queryNorm",
"details": []
}
]
},
{
"value": 0.8,
"description": "explain_introduce_exists:[1 TO 1], product of:",
"details": [
{
"value": 0.8,
"description": "boost",
"details": []
},
{
"value": 1,
"description": "queryNorm",
"details": []
}
]
},
{
"value": 0,
"description": "match on required clause, product of:",
"details": [
{
"value": 0,
"description": "# clause",
"details": []
},
{
"value": 1,
"description": "is_delete:F, product of:",
"details": [
{
"value": 1,
"description": "boost",
"details": []
},
{
"value": 1,
"description": "queryNorm",
"details": []
}
]
}
]
},
{
"value": 0,
"description": "match on required clause, product of:",
"details": [
{
"value": 0,
"description": "# clause",
"details": []
},
{
"value": 1,
"description": "item_type:[1601 TO 1601], product of:",
"details": [
{
"value": 1,
"description": "boost",
"details": []
},
{
"value": 1,
"description": "queryNorm",
"details": []
}
]
}
]
}
]
}
Lucene 的评分计算公式
来看看 Lucene 的评分计算公式:
分值计算方式为查询语句 q 中每个项 t 与文档 d 的匹配分值之和,当然还有权重的因素。其中每一项的意思如下表所示:
总匹配分值的计算
具体到上面的测试来讲,最终匹配分值=查询语句在多个字段中的得分之和。即最终结果:500.8=400+100+0.8
- 400:title.keyword
- 100:constant_score 中的 title.ik_gram
- 0.8:explain_introduce_exists 存在
查询语句在某个域匹配分值计算
具体分析每个字段下的得分是怎么计算的。以 title.keyword 的得分 400 为例,搜索词为:“湿疹”。所以计算结果等于这两部分的和:“湿疹”在 title 中的匹配分值 。即查询设置的 boost=400。
某个项在某个域的匹配分值的计算
第一部分:should
其中包括 3 个部分:
- title 和 title_alias 的 term 精准匹配
- title.ik_gram、title_alias.ik_gram、title_sub_title、alias_sub_title 的 constant_score 查询
- explain_introduce_exists 的 query_string 查询
term 精准匹配
接下来我们看看“湿疹”在 title.keyword 中的匹配分值 400 是怎么算出来的。这里的查询是精准匹配且 title 不进行分词,只有一个项:“湿疹”。在 field 中的分值 score = 查询权重 queryWeight x 域权重 fieldWeight,即 400 =400 * 1。
我们可以看下源码:
private Explanation explainScore(int doc, Explanation freq, IDFStats stats, NumericDocValues norms) {
Explanation queryExpl = explainQuery(stats);
Explanation fieldExpl = explainField(doc, freq, stats, norms);
if (queryExpl.getValue() == 1f) {
return fieldExpl;
}
return Explanation.match(
queryExpl.getValue() * fieldExpl.getValue(),
"score(doc="+doc+",freq="+freq.getValue()+"), product of:",
queryExpl, fieldExpl);
}
最后的匹配的得分= queryExpl.getValue() * fieldExpl.getValue(),
queryWeight 的计算
queryWeight 的计算可以在 TermQuery$TermWeight.normalize(float)方法中看到计算的实现:
private Explanation explainQuery(IDFStats stats) {
List<Explanation> subs = new ArrayList<>();
Explanation boostExpl = Explanation.match(stats.boost, "boost");
if (stats.boost != 1.0f)
subs.add(boostExpl);
subs.add(stats.idf);
Explanation queryNormExpl = Explanation.match(stats.queryNorm,"queryNorm");
subs.add(queryNormExpl);
return Explanation.match(
boostExpl.getValue() * stats.idf.getValue() * queryNormExpl.getValue(),
"queryWeight, product of:", subs);
}
@Override
public void normalize(float queryNorm, float boost) {
this.boost = boost;
this.queryNorm = queryNorm;
queryWeight = queryNorm * boost * idf.getValue();
value = queryWeight * idf.getValue(); // idf for document
}
}
queryWeight = queryNorm boost idf.getValue(),这里设置 boost = 400。即 400 = 400 1 1。
idf 的计算
idf 是项在倒排文档中出现的频率,计算方式为
public float idf(long docFreq, long docCount) {
return (float)(Math.log((double)(docCount + 1L) / (double)(docFreq + 1L)) + 1.0D);
}
docFreq 是根据指定关键字进行检索,检索到的 Document 的数量,我们测试的 docFreq=3;docCount 是指索引文件中总共的 Document 的数量,例子的 numDocs=1491(这里实际上是分片的文档数,实际中为了规避不同分片的影响,设置 idf=1)。但实际上我们自定义了相似度计算插件,设置 idf=1。
@Override
public float idf(long l, long l1) {
return 1f;
}
queryNorm 的计算
queryNorm 的计算在 DefaultSimilarity 类中实现,如下所示:
@Override
public float queryNorm(float sumOfSquaredWeights) {
return (float)(1.0 / Math.sqrt(sumOfSquaredWeights));
}
这里,sumOfSquaredWeights 的计算是在 org.apache.lucene.search.TermQuery.TermWeight 类中的 sumOfSquaredWeights 方法实现:
/**
* Creates a normalized weight for a top-level {@link Query}.
* The query is rewritten by this method and {@link Query#createWeight} called,
* afterwards the {@link Weight} is normalized. The returned {@code Weight}
* can then directly be used to get a {@link Scorer}.
* @lucene.internal
*/
public Weight createNormalizedWeight(Query query, boolean needsScores) throws IOException {
query = rewrite(query);
Weight weight = createWeight(query, needsScores);
float v = weight.getValueForNormalization();
float norm = getSimilarity(needsScores).queryNorm(v);
if (Float.isInfinite(norm) || Float.isNaN(norm)) {
norm = 1.0f;
}
weight.normalize(norm, 1.0f);
return weight;
}
sumOfSquaredWeights=weight.getValueForNormalization()
@Override
public float getValueForNormalization() {
// TODO: (sorta LUCENE-1907) make non-static class and expose this squaring via a nice method to subclasses?
return queryWeight * queryWeight; // sum of squared weights
}
其实默认情况下,sumOfSquaredWeights = idf x idf,因为 Lucune 中默认的 boost = 1.0。
上面测试例子中 sumOfSquaredWeights 的计算如下所示:
sumOfSquaredWeights = 400 x 400;
然后,就可以计算 queryNorm 的值了,计算如下所示:
queryNorm = (float)(1.0 / Math.sqrt(400 x 400) = 0.0025
实际我们也自定义了 queryNorm,直接输出 1。
@Override
public float queryNorm(float valueForNormalization) {
return 1.0F;
}
fieldWeight 的计算
在 org/apache/lucene/search/similarities/TFIDFSimilarity.java 的 explainScore 方法中有:
private Explanation explainField(int doc, Explanation freq, IDFStats stats, NumericDocValues norms) {
Explanation tfExplanation = Explanation.match(tf(freq.getValue()), "tf(freq="+freq.getValue()+"), with freq of:", freq);
Explanation fieldNormExpl = Explanation.match(
norms != null ? decodeNormValue(norms.get(doc)) : 1.0f,
"fieldNorm(doc=" + doc + ")");
return Explanation.match(
tfExplanation.getValue() * stats.idf.getValue() * fieldNormExpl.getValue(),
"fieldWeight in " + doc + ", product of:",
tfExplanation, stats.idf, fieldNormExpl);
}
使用计算式表示就是
fieldWeight = tf idf fieldNorm=1 1 1
tf 的计算
文档中项的出现概率,计算方式为:
/** Implemented as <code>sqrt(freq)</code>. */
@Override
public float tf(float freq) {
return (float)Math.sqrt(freq);
}
同样,我们也进行了自定义:
@Override
public float tf(float v) {
return 1f;
}
fieldNorm 的计算
tf 和 idf 的计算参考前面的,fieldNorm 的计算在索引的时候确定了,此时直接从索引文件中读取,这个方法并没有给出直接的计算。如果使用 ClassicSimilarity 的话,它实际上就是 lengthNorm,域越长的话 Norm 越小。在源码中藏得比较深一些,在 MemoryIndex 的 getNormValues 方法
public NumericDocValues getNormValues(String field) {
MemoryIndex.Info info = (MemoryIndex.Info)MemoryIndex.this.fields.get(field);
return info != null && !info.fieldInfo.omitsNorms() ? info.getNormDocValues() : null;
}
``
其内部类 Info 中有 MemoryIndex.this.normSimilarity.computeNorm(invertState),TFIDFSimilarity 就有对应的实现方法
NumericDocValues getNormDocValues() {
if (this.norms == null) {
FieldInvertState invertState = new FieldInvertState(this.fieldInfo.name, this.fieldInfo.number, this.numTokens, this.numOverlapTokens, 0, this.boost);
final long value = MemoryIndex.this.normSimilarity.computeNorm(invertState);
this.norms = new NumericDocValues() {
public long get(int docID) {
if (docID != 0) {
throw new IndexOutOfBoundsException();
} else {
return value;
}
}
};
}
return this.norms;
}
TFIDFSimilarity 实现方法其计算为:
public abstract float lengthNorm(FieldInvertState state);
@Override
public final long computeNorm(FieldInvertState state) {
float normValue = lengthNorm(state);
return encodeNormValue(normValue);
}
ClassicSimilarity继承TFIDFSimilarity,并实现lengthNorm()
@Override
public float lengthNorm(FieldInvertState state) {
final int numTerms;
if (discountOverlaps)
numTerms = state.getLength() - state.getNumOverlap();
else numTerms = state.getLength();
return state.getBoost() * ((float) (1.0 / Math.sqrt(numTerms)));
}
这个我就不再验算了,每个域的 Terms 数量开方求倒数乘以该域的 boost 得出最终的结果。在实际使用我们也做了自定义:
@Override
public float lengthNorm(FieldInvertState fieldInvertState) {
return 1f;
}
constant_score
在 constant_score 查询中,它可以包含查询或过滤,为任意一个匹配的文档指定评分 1
,忽略 TF/IDF 信息,不关心检索词频率 TF(Term Frequency)对搜索结果排序的影响。讓我們來看看 ConstantScoreWeight 源碼中計算公式:
@Override
public void normalize(float norm, float boost) {
this.boost = boost;
queryNorm = norm;
queryWeight = queryNorm * boost;
}
而在初始化时定义了norm和boost均为1
protected ConstantScoreWeight(Query query) {
super(query);
normalize(1f, 1f);
}
在例子中已分别设置 title.ik_gram、title_alias.ik_gram、title_sub_title、alias_sub_title 对应的 boost 值,那么只有 title.ik_gram 匹配到了,其 boost=100。
query_string
使用 query_string 查询来创建包含通配符、跨多个字段的搜索等复杂搜索。查询很严格,如果查询字符串包含任何无效语法,则会返回错误。具体的语法在这不一一举例说明,后面会单独发一篇文章。